Scientist
From Wikipedia, the free encyclopedia
A
scientist in a broad sense is one engaging in a
systematic activity to acquire
knowledge. In a more restricted sense, a scientist is an individual who uses the
scientific method.
[1] The person may be an expert in one or more areas of
science.
[2] This article focuses on the more restricted use of the word. Scientists perform research toward a more comprehensive understanding of nature, including physical, mathematical and social realms.
This is distinct from
philosophers, those who use logic toward a more comprehensive understanding of intangible aspects of reality that lack a direct connection to nature, focusing on the realm of thought itself.
Scientists are also distinct from
engineers, those who develop devices that serve practical purposes. When science is done with a goal toward practical utility, it is called 'applied science' (short of the creation of new devices that fall into the realm of engineering). When science is done with an inclusion of intangible aspects of reality it is called 'natural philosophy'.
Social roles that partly correspond with the modern scientist can be identified going back at least until 17th century natural philosophy, but the term
scientist is much more recent. Until the late 19th or early 20th century, those who pursued science were called "
natural philosophers" or "men of science".
[3][4][5][6]
English philosopher and historian of science
William Whewell coined the term
scientist in 1833, and it was first published in Whewell's anonymous 1834 review of
Mary Somerville's
On the Connexion of the Physical Sciences published in the
Quarterly Review. Whewell's suggestion of the term was partly satirical, a response to changing conceptions of science itself in which natural knowledge was increasingly seen as distinct from other forms of knowledge. Whewell wrote of "an increasing proclivity of separation and dismemberment" in the sciences; while highly specific terms proliferated—chemist, mathematician, naturalist—the broad term "philosopher" was no longer satisfactory to group together those who pursued science, without the caveats of "natural" or "experimental" philosopher. Members of the
British Association for the Advancement of Science had been complaining about the lack of a good term at recent meetings, Whewell reported in his review; alluding to himself, he noted that "some ingenious gentleman proposed that, by analogy with
artist, they might form [the word]
scientist, and added that there could be no scruple in making free with this term since we already have such words as
economist, and
atheist—but this was not generally palatable".
[7]
Whewell proposed the word again more seriously (and not anonymously) in his 1840
The Philosophy of the Inductive Sciences:
We need very much a name to describe a cultivator of science in general. I should incline to call him a Scientist. Thus we might say, that as an Artist is a Musician, Painter, or Poet, a Scientist is a Mathematician, Physicist, or Naturalist.
He also proposed the term
physicist at the same time, as a counterpart to the French word
physicien. Neither term gained wide acceptance until decades later;
scientist became a common term in the late 19th century in the United States and around the turn of the 20th century in Great Britain.
[8][9][10] By the twentieth century, the modern notion of science as a special brand of information about the world, practiced by a distinct group and pursued through a unique method, was essentially in place.
[edit] Description
Science and
technology have continually modified
human existence. As a profession the scientist of today is widely recognized. Scientists include
theoreticians who mainly develop new models to explain existing data and predict new results, and
experimentalists who mainly test models by making measurements — though in practice the division between these activities is not clear-cut, and many scientists perform both tasks.
Mathematics is often grouped with the sciences. Some of the greatest
physicists have also been creative mathematicians. There is a continuum from the most theoretical to the most
empirical scientists with no distinct boundaries. In terms of
personality, interests, training and
professional activity, there is little difference between
applied mathematicians and
theoretical physicists.
Scientists can be motivated in several ways. Many have a desire to understand why the
world is as we see it and how it came to be. They exhibit a strong curiosity about
reality. Other motivations are recognition by their peers and prestige, or the desire to apply scientific knowledge for the benefit of people's health, the nations, the world, nature or industries (
academic scientist and
industrial scientist).
[edit] Scientists versus engineers
Engineers and scientists are often confused in the minds of the general public, with the former being closer to
applied science. While scientists explore nature in order to discover general principles, engineers apply established principles drawn from science in order to create new inventions and improve upon the old ones.
[11][12] In short, scientists study things whereas engineers design things. However, there are plenty of instances where significant accomplishments are made in both fields by the same individual. When a scientist has also an engineering education, the same individual would explore principles in nature to solve problems and to design new technology. Scientists often perform some
engineering tasks in designing experimental equipment and building
prototypes, and some
engineers do first-rate scientific research.
Biomedical,
mechanical,
electrical,
chemical, and
aerospace engineers are often at the forefront of scientific investigation of new phenomena and materials.
Peter Debye received a
degree in
electrical engineering and a
doctorate in
physics before eventually winning a
Nobel Prize in
chemistry. Similarly,
Paul Dirac, one of the founders of
quantum mechanics, began his academic career as an
electrical engineer before proceeding to mathematics and later
theoretical physics.
Claude Shannon, a theoretical engineer, founded modern
information theory.
[edit] Historical development
The social roles of "scientists", and their predecessors before the emergence of modern scientific disciplines, have evolved considerably over time. Scientists of different eras (and before them, natural philosophers, mathematicians, natural historians, natural theologians, engineers, and other who contributed to the development of science) have had widely different places in society, and the
social norms,
ethical values, and
epistemic virtues associated with scientists—and expected of them—have changed over time as well. Accordingly, many different historical figures can be identified as early scientists, depending on which elements of modern science are taken to be essential. Some historians point to the 17th century as the period when science in a recognizably modern form developed (what is popularly called the
Scientific Revolution), and hence is when the first people who can be considered scientists are to be found. If the category of "scientist" is limited to those who do scientific research as a profession, then the social role of scientist essentially emerged in the 19th century as part of the professionalization of science.
[13]
"No one in the history of civilization has shaped our understanding of science and natural philosophy more than the great Greek philosopher and scientist
Aristotle (384-322 BC), who exerted a profound and pervasive influence for more than two thousand years" —Gary B. Ferngren
[14] [edit] Ancient and medieval science
| This section's factual accuracy is disputed. Please see the relevant discussion on the talk page. (June 2010) |
Knowledge about nature in Classical Antiquity was pursued by many kinds of scholars.
Greek contributions to science—including works of geometry and mathematical astronomy, early accounts of biological processes and catalogs of plants and animals, and theories of knowledge and learning—were produced by
philosophers and
physicians, as well as practitioners of various trades. These roles, and their associations with scientific knowledge, spread with the
Roman Empire and, with the
spread of Christianity became closely link to religious institutions in most of Europe.
Astrology and astronomy became an important area of knowledge, and the role of astronomer/astrologer developed with the support political and religions
patronage. By the time of the
medieval university system, knowledge was divide into the
trivium—philosophy, including
natural philosophy—and the
quadrivium—mathematics, including astronomy. Hence, the medieval analogs of scientists were often either philosophers or mathematicians. Knowledge of plants and animals was broadly the province of physicians.
Science in medieval Islam generated some new modes of developing natural knowledge, although still within the bounds of existing social roles such as philosopher and mathematician. Many proto-scientists from the
Islamic Golden Age and medieval and
Renaissance Europe are considered polymaths, in part because of the lack of anything corresponding to modern
scientific disciplines. Many of these early polymaths were also religious
priests and
theologians: for example, Alhazen and
al-Biruni were
mutakallimiin; the physician
Avicenna was a
hafiz; the physician
Ibn al-Nafis was a hafiz,
muhaddith and
ulema; the botanist
Otto Brunfels was a theologian and historian of Protestantism; the astronomer and physician
Nicolaus Copernicus was a priest.
[edit] Historical scientists
The physicist
Albert Einstein is one of the most well known scientists of the 20th century.
Descartes was not only a pioneer of
analytic geometry but formulated a
theory of
mechanics and advanced ideas about the origins of
animal movement and
perception.
Vision interested the
physicists Young and
Helmholtz, who also studied
optics,
hearing and
music.
Newton extended Descartes' mathematics by inventing
calculus (contemporaneously with
Leibniz). He provided a comprehensive formulation of
classical mechanics and investigated
light and optics.
Fourier founded a new branch of mathematics —
infinite, periodic series — studied
heat flow and
infrared radiation, and discovered the
greenhouse effect.
Von Neumann,
Turing,
Khinchin,
Markov and
Wiener, all mathematicians, made major contributions to science and
probability theory, including the ideas behind
computers, and some of the foundations of
statistical mechanics and
quantum mechanics. Many mathematically inclined scientists, including
Galileo, were also
musicians.
In the late 19th century,
Louis Pasteur, an
organic chemist, discovered that
microorganisms can cause
disease. A few years earlier,
Oliver Wendell Holmes, Sr., the
American physician, poet and
essayist, noted that
sepsis in women following
childbirth was spread by the hands of doctors and
nurses, four years before
Semmelweis in
Europe. There are many compelling stories in
medicine and
biology, such as the development of ideas about the circulation of
blood from
Galen to
Harvey. The flowering of
genetics and
molecular biology in the 20th century is replete with famous names.
Ramón y Cajal won the
Nobel Prize in 1906 for his remarkable observations in
neuroanatomy.
Some see a
dichotomy between experimental sciences and purely "
observational" sciences such as
astronomy,
meteorology,
oceanography and
seismology. But
astronomers have done basic research in
optics, developed
charge-coupled devices, and in recent decades have sent
space probes to study other
planets in addition to using the
Hubble Telescope to probe the
origins of the
Universe some 14 billion years ago.
Microwave spectroscopy has now identified dozens of
organic molecules in
interstellar space, requiring
laboratory experimentation and
computer simulation to confirm the observational
data and starting a new branch of chemistry.
Computer modeling and
numerical methods are techniques required of students in every field of quantitative science.
Those considering science as a
career often look to the frontiers. These include
cosmology and
biology, especially
molecular biology and the
human genome project. Other areas of active research include the exploration of
matter at the scale of
elementary particles as described by
high-energy physics, and
nanotechnology, which hopes to develop
electronics including microscopic
computers, and perhaps
artificial intelligence. Although there have been remarkable discoveries with regard to
brain function and
neurotransmitters, the nature of the
mind and
human thought still remain unknown.
[edit] Types of scientists
[edit] See also
- Related lists
[edit] References
- ^ Isaac Newton (1687, 1713, 1726). "[4] Rules for the study of natural philosophy", Philosophiae Naturalis Principia Mathematica, Third edition. The General Scholium containing the 4 rules follows Book 3, The System of the World. Reprinted on pages 794-796 of I. Bernard Cohen and Anne Whitman's 1999 translation, University of California Press ISBN 0-520-08817-4, 974 pages.
- ^ Oxford English Dictionary, 2nd ed. 1989
- ^ Nineteenth-Century Attitudes: Men of Science. http://www.rpi.edu/~rosss2/book.html
- ^ Friedrich Ueberweg, History of Philosophy: From Thales to the Present Time. C. Scribner's sons v.1, 1887
- ^ Steve Fuller, Kuhn VS. Popper: The Struggle For The Soul Of Science. Columbia University Press 2004. Page 43. ISBN 0231134282
- ^ Science by American Association for the Advancement of Science, 1917. v.45 1917 Jan-Jun. Page 274.
- ^ Holmes, R (2008). The age of wonder: How the romantic generation discovered the beauty and terror of science. London: Harper Press. p. 449. ISBN 9780007149537.
- ^ Sydney Ross (1962). "Scientist: The story of a word", Annals of Science, volume 18, issue 2, pp. 65 — 85.
- ^ "William Whewell (1794-1866) gentleman of science". http://www.victorianweb.org/science/whewell.html. Retrieved 2007-05-19.
- ^ Tamara Preaud, Derek E. Ostergard, The Sèvres Porcelain Manufactory. Yale University Press 1997. 416 pages. ISBN 0300073380 Page 36.
- ^ National Society of Professional Engineers (2006). "Frequently Asked Questions About Engineering". http://www.nspe.org/media/mr1-faqs.asp. Retrieved 2006-09-21. CRACKERS.Science is knowledge based on observed facts and tested truths arranged in an orderly system that can be validated and communicated to other people. Engineering is the creative application of scientific principles used to plan, build, direct, guide, manage, or work on systems to maintain and improve our daily lives.
- ^ Bureau of Labor Statistics, U.S. Department of Labor (2006). "Engineers". Occupational Outlook Handbook, 2006-07 Edition. http://www.bls.gov/oco/ocos027.htm. Retrieved 2006-09-21.
- ^ On the historical development of the character of scientists and the predecessors, see: Steven Shapin (2008). The Scientific Life: A Moral History of a Late Modern Vocation. Chicago: Chicago University Press. ISBN 0-226-75024-8
- ^ Gary B. Ferngren (2002). "Science and religion: a historical introduction". JHU Press. p.33. ISBN 0801870380
[edit] External articles
- Further reading
- Websites